3.11.81 \(\int \frac {x^7}{(-2+3 x^2) (-1+3 x^2)^{3/4}} \, dx\) [1081]

Optimal. Leaf size=78 \[ \frac {14}{81} \sqrt [4]{-1+3 x^2}+\frac {8}{405} \left (-1+3 x^2\right )^{5/4}+\frac {2}{729} \left (-1+3 x^2\right )^{9/4}-\frac {8}{81} \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )-\frac {8}{81} \tanh ^{-1}\left (\sqrt [4]{-1+3 x^2}\right ) \]

[Out]

14/81*(3*x^2-1)^(1/4)+8/405*(3*x^2-1)^(5/4)+2/729*(3*x^2-1)^(9/4)-8/81*arctan((3*x^2-1)^(1/4))-8/81*arctanh((3
*x^2-1)^(1/4))

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {457, 90, 65, 218, 212, 209} \begin {gather*} -\frac {8}{81} \text {ArcTan}\left (\sqrt [4]{3 x^2-1}\right )+\frac {2}{729} \left (3 x^2-1\right )^{9/4}+\frac {8}{405} \left (3 x^2-1\right )^{5/4}+\frac {14}{81} \sqrt [4]{3 x^2-1}-\frac {8}{81} \tanh ^{-1}\left (\sqrt [4]{3 x^2-1}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^7/((-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

(14*(-1 + 3*x^2)^(1/4))/81 + (8*(-1 + 3*x^2)^(5/4))/405 + (2*(-1 + 3*x^2)^(9/4))/729 - (8*ArcTan[(-1 + 3*x^2)^
(1/4)])/81 - (8*ArcTanh[(-1 + 3*x^2)^(1/4)])/81

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^7}{\left (-2+3 x^2\right ) \left (-1+3 x^2\right )^{3/4}} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {x^3}{(-2+3 x) (-1+3 x)^{3/4}} \, dx,x,x^2\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \left (\frac {7}{27 (-1+3 x)^{3/4}}+\frac {8}{27 (-2+3 x) (-1+3 x)^{3/4}}+\frac {4}{27} \sqrt [4]{-1+3 x}+\frac {1}{27} (-1+3 x)^{5/4}\right ) \, dx,x,x^2\right )\\ &=\frac {14}{81} \sqrt [4]{-1+3 x^2}+\frac {8}{405} \left (-1+3 x^2\right )^{5/4}+\frac {2}{729} \left (-1+3 x^2\right )^{9/4}+\frac {4}{27} \text {Subst}\left (\int \frac {1}{(-2+3 x) (-1+3 x)^{3/4}} \, dx,x,x^2\right )\\ &=\frac {14}{81} \sqrt [4]{-1+3 x^2}+\frac {8}{405} \left (-1+3 x^2\right )^{5/4}+\frac {2}{729} \left (-1+3 x^2\right )^{9/4}+\frac {16}{81} \text {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\sqrt [4]{-1+3 x^2}\right )\\ &=\frac {14}{81} \sqrt [4]{-1+3 x^2}+\frac {8}{405} \left (-1+3 x^2\right )^{5/4}+\frac {2}{729} \left (-1+3 x^2\right )^{9/4}-\frac {8}{81} \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )-\frac {8}{81} \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt [4]{-1+3 x^2}\right )\\ &=\frac {14}{81} \sqrt [4]{-1+3 x^2}+\frac {8}{405} \left (-1+3 x^2\right )^{5/4}+\frac {2}{729} \left (-1+3 x^2\right )^{9/4}-\frac {8}{81} \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )-\frac {8}{81} \tanh ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 57, normalized size = 0.73 \begin {gather*} \frac {2 \left (\sqrt [4]{-1+3 x^2} \left (284+78 x^2+45 x^4\right )-180 \tan ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )-180 \tanh ^{-1}\left (\sqrt [4]{-1+3 x^2}\right )\right )}{3645} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^7/((-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

(2*((-1 + 3*x^2)^(1/4)*(284 + 78*x^2 + 45*x^4) - 180*ArcTan[(-1 + 3*x^2)^(1/4)] - 180*ArcTanh[(-1 + 3*x^2)^(1/
4)]))/3645

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 1.65, size = 147, normalized size = 1.88

method result size
trager \(\left (\frac {2}{81} x^{4}+\frac {52}{1215} x^{2}+\frac {568}{3645}\right ) \left (3 x^{2}-1\right )^{\frac {1}{4}}-\frac {4 \ln \left (-\frac {2 \left (3 x^{2}-1\right )^{\frac {3}{4}}+2 \sqrt {3 x^{2}-1}+3 x^{2}+2 \left (3 x^{2}-1\right )^{\frac {1}{4}}}{3 x^{2}-2}\right )}{81}+\frac {4 \RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {2 \RootOf \left (\textit {\_Z}^{2}+1\right ) \left (3 x^{2}-1\right )^{\frac {3}{4}}-2 \RootOf \left (\textit {\_Z}^{2}+1\right ) \left (3 x^{2}-1\right )^{\frac {1}{4}}+2 \sqrt {3 x^{2}-1}-3 x^{2}}{3 x^{2}-2}\right )}{81}\) \(147\)
risch \(\frac {2 \left (45 x^{4}+78 x^{2}+284\right ) \left (3 x^{2}-1\right )^{\frac {1}{4}}}{3645}+\frac {\left (\frac {4 \ln \left (\frac {-27 x^{6}+18 \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {1}{4}} x^{4}-6 \sqrt {27 x^{6}-27 x^{4}+9 x^{2}-1}\, x^{2}+18 x^{4}+2 \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {3}{4}}-12 \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {1}{4}} x^{2}+2 \sqrt {27 x^{6}-27 x^{4}+9 x^{2}-1}-3 x^{2}+2 \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {1}{4}}}{\left (3 x^{2}-2\right ) \left (3 x^{2}-1\right )^{2}}\right )}{81}-\frac {4 \RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-18 \RootOf \left (\textit {\_Z}^{2}+1\right ) \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {1}{4}} x^{4}-27 x^{6}+2 \RootOf \left (\textit {\_Z}^{2}+1\right ) \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {3}{4}}+12 \RootOf \left (\textit {\_Z}^{2}+1\right ) \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {1}{4}} x^{2}+6 \sqrt {27 x^{6}-27 x^{4}+9 x^{2}-1}\, x^{2}+18 x^{4}-2 \RootOf \left (\textit {\_Z}^{2}+1\right ) \left (27 x^{6}-27 x^{4}+9 x^{2}-1\right )^{\frac {1}{4}}-2 \sqrt {27 x^{6}-27 x^{4}+9 x^{2}-1}-3 x^{2}}{\left (3 x^{2}-2\right ) \left (3 x^{2}-1\right )^{2}}\right )}{81}\right ) \left (\left (3 x^{2}-1\right )^{3}\right )^{\frac {1}{4}}}{\left (3 x^{2}-1\right )^{\frac {3}{4}}}\) \(423\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(3*x^2-2)/(3*x^2-1)^(3/4),x,method=_RETURNVERBOSE)

[Out]

(2/81*x^4+52/1215*x^2+568/3645)*(3*x^2-1)^(1/4)-4/81*ln(-(2*(3*x^2-1)^(3/4)+2*(3*x^2-1)^(1/2)+3*x^2+2*(3*x^2-1
)^(1/4))/(3*x^2-2))+4/81*RootOf(_Z^2+1)*ln((2*RootOf(_Z^2+1)*(3*x^2-1)^(3/4)-2*RootOf(_Z^2+1)*(3*x^2-1)^(1/4)+
2*(3*x^2-1)^(1/2)-3*x^2)/(3*x^2-2))

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 74, normalized size = 0.95 \begin {gather*} \frac {2}{729} \, {\left (3 \, x^{2} - 1\right )}^{\frac {9}{4}} + \frac {8}{405} \, {\left (3 \, x^{2} - 1\right )}^{\frac {5}{4}} + \frac {14}{81} \, {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - \frac {8}{81} \, \arctan \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}\right ) - \frac {4}{81} \, \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 1\right ) + \frac {4}{81} \, \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="maxima")

[Out]

2/729*(3*x^2 - 1)^(9/4) + 8/405*(3*x^2 - 1)^(5/4) + 14/81*(3*x^2 - 1)^(1/4) - 8/81*arctan((3*x^2 - 1)^(1/4)) -
 4/81*log((3*x^2 - 1)^(1/4) + 1) + 4/81*log((3*x^2 - 1)^(1/4) - 1)

________________________________________________________________________________________

Fricas [A]
time = 0.50, size = 64, normalized size = 0.82 \begin {gather*} \frac {2}{3645} \, {\left (45 \, x^{4} + 78 \, x^{2} + 284\right )} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - \frac {8}{81} \, \arctan \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}\right ) - \frac {4}{81} \, \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 1\right ) + \frac {4}{81} \, \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="fricas")

[Out]

2/3645*(45*x^4 + 78*x^2 + 284)*(3*x^2 - 1)^(1/4) - 8/81*arctan((3*x^2 - 1)^(1/4)) - 4/81*log((3*x^2 - 1)^(1/4)
 + 1) + 4/81*log((3*x^2 - 1)^(1/4) - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{7}}{\left (3 x^{2} - 2\right ) \left (3 x^{2} - 1\right )^{\frac {3}{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(3*x**2-2)/(3*x**2-1)**(3/4),x)

[Out]

Integral(x**7/((3*x**2 - 2)*(3*x**2 - 1)**(3/4)), x)

________________________________________________________________________________________

Giac [A]
time = 1.51, size = 75, normalized size = 0.96 \begin {gather*} \frac {2}{729} \, {\left (3 \, x^{2} - 1\right )}^{\frac {9}{4}} + \frac {8}{405} \, {\left (3 \, x^{2} - 1\right )}^{\frac {5}{4}} + \frac {14}{81} \, {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - \frac {8}{81} \, \arctan \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}\right ) - \frac {4}{81} \, \log \left ({\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} + 1\right ) + \frac {4}{81} \, \log \left ({\left | {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="giac")

[Out]

2/729*(3*x^2 - 1)^(9/4) + 8/405*(3*x^2 - 1)^(5/4) + 14/81*(3*x^2 - 1)^(1/4) - 8/81*arctan((3*x^2 - 1)^(1/4)) -
 4/81*log((3*x^2 - 1)^(1/4) + 1) + 4/81*log(abs((3*x^2 - 1)^(1/4) - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 62, normalized size = 0.79 \begin {gather*} \frac {14\,{\left (3\,x^2-1\right )}^{1/4}}{81}-\frac {8\,\mathrm {atan}\left ({\left (3\,x^2-1\right )}^{1/4}\right )}{81}+\frac {8\,{\left (3\,x^2-1\right )}^{5/4}}{405}+\frac {2\,{\left (3\,x^2-1\right )}^{9/4}}{729}+\frac {\mathrm {atan}\left ({\left (3\,x^2-1\right )}^{1/4}\,1{}\mathrm {i}\right )\,8{}\mathrm {i}}{81} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)),x)

[Out]

(atan((3*x^2 - 1)^(1/4)*1i)*8i)/81 - (8*atan((3*x^2 - 1)^(1/4)))/81 + (14*(3*x^2 - 1)^(1/4))/81 + (8*(3*x^2 -
1)^(5/4))/405 + (2*(3*x^2 - 1)^(9/4))/729

________________________________________________________________________________________